Affiliation:
1. Department of Molecular Genetics, Novo Nordisk, Bagsvaerd, Denmark
2. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
3. Research & Development, Amersham Pharmacia Biotech, Bucks, U.K.
Abstract
Thiazolidinediones (TZDs) are a new class of compounds that improve insulin sensitivity in type 2 diabetic patients as well as in rodent models of this disease. These compounds act as ligands for a member of the nuclear hormone receptor superfamily, peroxisome proliferator–activated receptor-γ (PPAR-γ), which is highly expressed in adipose tissue and, moreover, has been shown to play an important role in adipocyte differentiation. The strong correlation between the antidiabetic activity of TZDs and their ability to activate PPAR-γ suggests that PPAR-γ, through downstream-regulated genes, mediates the effects of TZDs. In this report, we present the isolation and characterization of 81 genes, encoding proteins of known function, differentially expressed during TZD-stimulated differentiation of 3T3-L1 cells. By the use of different reverse– Northern blot techniques, the differential expression of 50 of these genes could be verified, and 21 genes were specifically regulated by a potent TZD during the course of adipocyte differentiation, whereas no effect of a PPAR-γ antagonist could be observed in mature adipocytes. The differential expression of a large fraction of the isolated genes was also shown to occur in white adipose tissue of ob/ob mice treated with rosiglitazone; combined, our results suggest that an important effect of rosiglitazone in adipose tissue is based on activation of PPAR-γ in preexisting preadipocytes found among the mature adipocytes, resulting in subsequent adipocyte differentiation.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献