Novel Genes Regulated by the Insulin Sensitizer Rosiglitazone During Adipocyte Differentiation

Author:

Albrektsen Tatjana12,Frederiksen Klaus Stensgaard1,Holmes William E.1,Boel Esper1,Taylor Karen3,Fleckner Jan1

Affiliation:

1. Department of Molecular Genetics, Novo Nordisk, Bagsvaerd, Denmark

2. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark

3. Research & Development, Amersham Pharmacia Biotech, Bucks, U.K.

Abstract

Thiazolidinediones (TZDs) are a new class of compounds that improve insulin sensitivity in type 2 diabetic patients as well as in rodent models of this disease. These compounds act as ligands for a member of the nuclear hormone receptor superfamily, peroxisome proliferator–activated receptor-γ (PPAR-γ), which is highly expressed in adipose tissue and, moreover, has been shown to play an important role in adipocyte differentiation. The strong correlation between the antidiabetic activity of TZDs and their ability to activate PPAR-γ suggests that PPAR-γ, through downstream-regulated genes, mediates the effects of TZDs. In this report, we present the isolation and characterization of 81 genes, encoding proteins of known function, differentially expressed during TZD-stimulated differentiation of 3T3-L1 cells. By the use of different reverse– Northern blot techniques, the differential expression of 50 of these genes could be verified, and 21 genes were specifically regulated by a potent TZD during the course of adipocyte differentiation, whereas no effect of a PPAR-γ antagonist could be observed in mature adipocytes. The differential expression of a large fraction of the isolated genes was also shown to occur in white adipose tissue of ob/ob mice treated with rosiglitazone; combined, our results suggest that an important effect of rosiglitazone in adipose tissue is based on activation of PPAR-γ in preexisting preadipocytes found among the mature adipocytes, resulting in subsequent adipocyte differentiation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3