Affiliation:
1. Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
2. Department of Endocrinology, University Clinic, Valencia, Spain
Abstract
The aim of this work was to study the mechanism of free radical formation in type 1 diabetes and its possible prevention. We have found oxidation of blood glutathione and an increase in plasma lipoperoxide levels in both human type 1 diabetes and experimental diabetes. Peroxide production by mitochondria does not increase in diabetes. On the contrary, the activity of xanthine oxidase, a superoxide-generating enzyme, increases in liver and plasma of diabetic animals. The increase in plasma xanthine oxidase activity may be explained by the increase in the hepatic release of this enzyme, which is not due to nonspecific membrane damage: release of other hepatic enzymes, such as the amino transferases, does not increase in diabetes. Superoxide formation by aortic rings of rabbits increases significantly in diabetes. This is completely inhibited by allopurinol, an inhibitor of xanthine oxidase. Heparin, which releases xanthine oxidase from the vessel wall, also decreases superoxide formation by aortic rings of diabetic animals. Treatment with allopurinol decreases oxidative stress in type 1 diabetic patients: hemoglobin glycation, glutathione oxidation, and the increase in lipid peroxidation are prevented. These results may have clinical significance in the prevention of late-onset vascular complications of diabetes.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
345 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献