All-Trans Retinoic Acid Induces Differentiation of Ducts and Endocrine Cells by Mesenchymal/Epithelial Interactions in Embryonic Pancreas

Author:

Tulachan Sidhartha Singh1,Doi Ryuichiro1,Kawaguchi Yoshiya1,Tsuji Shoichiro1,Nakajima Sanae1,Masui Toshihiko1,Koizumi Masayuki1,Toyoda Eiji1,Mori Tomohiko1,Ito Daisuke1,Kami Kazuhiro1,Fujimoto Koji1,Imamura Masayuki1

Affiliation:

1. From the Department of Surgery and Surgical Basic Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Abstract

Retinoids during the embryonic period act as a mesenchymal inducer in many organs, including kidney, lung, central nervous system, and gut. Retinoic acid (RA) demonstrates insulinotropic effects in adult pancreas, but only a limited study has elucidated its role in pancreatic organogenesis. In this study, we have analyzed the existence of RA-signaling machinery in embryonic pancreas and evaluated its role using in vitro tissue culture experiments. Here we show the presence of endogenous retinaldehyde dehydrogenase 2 (RALDH2), the most effective RA-synthesizing enzyme, RA-binding proteins, and RA receptors (RARs) in embryonic pancreatic tissue. RALDH2 is expressed exclusively in the mesenchyme. Exogenously added all-trans-retinoic acid (atRA) in tissue culture experiments stimulated differentiation of endocrine and duct cells and promoted apoptotic cell death of acinar tissue. Furthermore, we demonstrate that atRA upregulates the PDX-1 expression. Taken together, our data suggest that atRA-mediated mesenchymal/epithelial interactions play an important role in determining the cell fate of epithelial cells via regulation of the PDX-1 gene, leading to the proper formation of the endocrine versus exocrine component during pancreatic organogenesis.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3