Novel Arguments in Favor of the Substrate-Transport Model of Glucose-6-Phosphatase

Author:

Gerin Isabelle1,Noël Gaëtane1,Van Schaftingen Emile1

Affiliation:

1. Laboratory of Physiological Chemistry, ICP and Université Catholique de Louvain, Brussels, Belgium

Abstract

The purpose of this work was to discriminate between two models for glucose-6-phosphatase: one in which the enzyme has its catalytic site oriented toward the lumen of the endoplasmic reticulum, requiring transporters for glucose-6-phosphate, inorganic phosphate (Pi), and glucose (substrate-transport model), and a second one in which the hydrolysis of glucose-6-phosphate occurs inside the membrane (conformational model). We show that microsomes preloaded with yeast phosphoglucose isomerase catalyzed the detritiation of [2-3H]glucose-6-phosphate and that this reaction was inhibited by up to 90% by S3483, a compound known to inhibit glucose-6-phosphate hydrolysis in intact but not in detergent-treated microsomes. These results indicate that glucose-6-phosphate is transported to the lumen of the microsomes in an S3483-sensitive manner. Detritiation by intramicrosomal phosphoglucose isomerase was stimulated twofold by 1 mmol/l vanadate, a phosphatase inhibitor, indicating that glucose-6-phosphatase and the isomerase compete for the same intravesicular pool of glucose-6-phosphate. To investigate the site of release of Pi from glucose-6-phosphate, we incubated microsomes with Pb2+, which forms an insoluble complex with Pi, preventing its rapid exit from the microsomes. Under these conditions, ∼80% of the Pi that was formed after 5 min was intramicrosomal, compared with <10% in the absence of Pb2+. We also show that, when incubated with glucose-6-phosphate and mannitol, glucose-6-phosphatase formed mannitol-1-phosphate and that this nonphysiological product was initially present within the microsomes before being released to the medium. These results indicate that the primary site of product release by glucose-6-phosphatase is the lumen of the endoplasmic reticulum.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3