Epidermal Growth Factor Increases Undifferentiated Pancreatic Embryonic Cells In Vitro

Author:

Cras-Méneur Corentin1,Elghazi Lynda1,Czernichow Paul1,Scharfmann Raphael1

Affiliation:

1. INSERM U457, Hospital R. Debré, Paris, France

Abstract

During embryonic life, the development of a proper mass of mature pancreatic tissue is thought to require the proliferation of precursor cells, followed by their differentiation into endocrine or acinar cells. We investigated whether perturbing the proliferation of precursor cells in vitro could modify the final mass of endocrine tissue that develops. For that purpose, we used activators or inhibitors of signals mediated by receptor tyrosine kinases. We demonstrated that when embryonic day 13.5 rat pancreatic epithelium is cultured in the presence of PD98059, an inhibitor of the mitogen-activated protein (MAP) kinase, epithelial cell proliferation is decreased, whereas endocrine cell differentiation is activated. On the other hand, in the presence of epidermal growth factor (EGF), an activator of the MAP kinase pathway, the mass of tissue that develops is increased, whereas the absolute number of endocrine cells that develops is decreased. Under this last condition, a large number of epithelial cells proliferate but remain undifferentiated. In a second step, when EGF is removed from the pool of immature pancreatic epithelial cells, the cells differentiate en masse into insulin-expressing cells. The total number of insulin-expressing cells that develop can thus be increased by first activating the proliferation of immature epithelial cells with growth factors, thus allowing an increase in the pool of precursor cells, and next allowing their differentiation into endocrine cells by removing the growth factor. This strategy suggests a possible tissue engineering approach to expanding β-cells.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3