Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice.

Author:

Flyvbjerg A1,Bennett W F1,Rasch R1,Kopchick J J1,Scarlett J A1

Affiliation:

1. Medical Department M/Medical Research Lab M, Institute of Experimental Clinical Research, Aarhus Kommunehospital, Denmark.

Abstract

Growth hormone (GH) and IGFs have a long and distinguished history in diabetes, with possible participation in the development of renal complications. To investigate the effect of a newly developed GH receptor (GHR) antagonist (G120K-PEG) on renal/glomerular hypertrophy and urinary albumin excretion (UAE), streptozotocin-induced diabetic and nondiabetic mice were injected with G120K-PEG every 2nd day for 28 days. Placebo-treated diabetic and nondiabetic animals were used as reference groups. Placebo-treated diabetic animals were characterized by growth retardation, hyperphagia, hyperglycemia, increased serum GH levels, reduced serum IGF-I, IGF-binding protein (IGFBP)-3, and liver IGF-I levels, increased kidney IGF-I, renal/glomerular hypertrophy, and increased UAE when compared with nondiabetic animals. No differences were seen between the two diabetic groups with respect to body weight, food intake, blood glucose, serum GH, IGF-I, and IGFBP-3 levels or hepatic IGF-I levels. Kidney IGF-I, kidney weight, and glomerular volume were normalized, while the rise in UAE was partially attenuated in the G120K-PEG-treated diabetic animals. No effect of G120K-PEG treatment on any of the parameters mentioned above was seen in nondiabetic animals. In conclusion, administration of a GHR antagonist in diabetic mice has renal effects without affecting metabolic control and circulating levels of GH, IGF-I, or IGFBP-3, thus indicating that the effect of G120K-PEG may be mediated through a direct inhibitory effect on renal IGF-I through the renal GHR. The present study suggests that specific GHR blockade may present a new concept in the treatment of diabetic kidney disease.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3