Identification of alpha- and beta-cells in intact isolated islets of Langerhans by their characteristic cytoplasmic Ca2+ concentration dynamics and immunocytochemical staining.

Author:

Asada N1,Shibuya I1,Iwanaga T1,Niwa K1,Kanno T1

Affiliation:

1. Medical Sciences Laboratory, Hokkaido University of Education at Asahikawa, Japan. asada@asa.hokkyodai.ac.jp

Abstract

Ratiometric images of cytoplasmic Ca2+ concentration ([Ca2+]c) in individual cells were recorded simultaneously with a confocal ultraviolet-laser microscope in the Indo-1-loaded islets isolated from mice. After changes in [Ca2+]c in response to glucose or amino acids were recorded, the islet was fixed, permeabilized, and stained by the indirect immunofluorescence method against insulin or glucagon in situ; the individual cells were then identified in the focal plain identical to that used for the [Ca2+]c imaging. Almost all cells identified as insulin-positive (beta-cells) by their distinct immunofluorescence responded to the increase in glucose concentration from 3 to 11 mmol/l with an increase in [Ca2+]c. Major populations of cells (approximately 65%) identified as glucagon-positive (alpha-cells) responded to the addition of arginine (5-10 mmol/l) to 3 mmol/l glucose solution with an increase in [Ca2+]c. About half of the alpha-cells (47.6%) responded to the addition of alanine (5-10 mmol/l) to 3 mmol/l glucose solution with an increase in [Ca2+]c. In contrast, <13% of beta-cells responded to the addition of alanine (5-10 mmol/l) or arginine (5-10 mmol/l) to 3 mol/l glucose with an increase in [Ca2+]c. More than one-fourth of alpha-cells responded with an increase in [Ca2+]c when glucose concentration in perifusion solution was reduced from 11 to 0 mmol/l. These results indicate that [Ca2+]c changes in islet cells stimulated by glucose or amino acid were characteristic of the cell species, at least in the alpha- and beta-cell. This technique provides a useful tool to investigate not only the intracellular signal transduction but also the intercellular signal transmission in the intact islet.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3