Glucose activates both K(ATP) channel-dependent and K(ATP) channel-independent signaling pathways in human islets.

Author:

Straub S G1,James R F1,Dunne M J1,Sharp G W1

Affiliation:

1. Department of Biomedical Science, University of Sheffield, UK.

Abstract

Insulin secretion by isolated islets of Langerhans from 19 human donors (9 women and 10 men) was studied in vitro to test the hypothesis that human islets contain both the K(ATP) channel-dependent and the K(ATP) channel-independent signaling pathways. The results demonstrated the presence of both of these major pathways of glucose signaling. Thus, insulin secretion was stimulated by high glucose concentrations, by the sulfonylurea tolbutamide, and by a depolarizing concentration of potassium chloride. Diazoxide, which activates the K(ATP) channel, completely blocked the stimulation of release by glucose. Stimulation of insulin release by tolbutamide, which inhibits the K(ATP) channel and depolarizes the beta-cell, and inhibition of glucose-stimulated release by diazoxide, which activates the channel and repolarizes the beta-cell, confirm the involvement of the K(ATP) channel-dependent pathway in glucose signaling. The participation of the K(ATP) channel-independent pathway in the stimulation of insulin release by glucose was demonstrated for the first time in human islets. This was done in two ways. The first method, in the presence of diazoxide, blocked the action of glucose on the K(ATP) channel in combination with a depolarizing concentration of KCl to raise [Ca2+]i. Under these conditions, glucose stimulated insulin release. A second method to demonstrate the involvement of the K(ATP) channel-independent pathway was to close the K(ATP) channels with tolbutamide. Again, with no possibility of further action on the K(ATP) channel, glucose stimulated insulin release. In a final series of experiments, glucose-stimulated insulin release was profoundly inhibited by somatostatin, clonidine, and prostaglandin E2, but not by galanin.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3