Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes.

Author:

Wu P1,Inskeep K1,Bowker-Kinley M M1,Popov K M1,Harris R A1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA.

Abstract

Regulation of the activity of the pyruvate dehydrogenase complex in skeletal muscle plays an important role in fuel selection and glucose homeostasis. Activation of the complex promotes disposal of glucose, whereas inactivation conserves substrates for hepatic glucose production. Starvation and diabetes induce a stable increase in pyruvate dehydrogenase kinase activity in skeletal muscle mitochondria that promotes phosphorylation and inactivation of the complex. The present study shows that these metabolic conditions induce a large increase in the expression of PDK4, one of four pyruvate dehydrogenase kinase isoenzymes expressed in mammalian tissues, in the mitochondria of gastrocnemius muscle. Refeeding starved rats and insulin treatment of diabetic rats decreased pyruvate dehydrogenase kinase activity and also reversed the increase in PDK4 protein in gastrocnemius muscle mitochondria. Starvation and diabetes also increased the abundance of PDK4 mRNA in gastrocnemius muscle, and refeeding and insulin treatment again reversed the effects of starvation and diabetes. These findings suggest that an increase in amount of this enzyme contributes to hyperphosphorylation and inactivation of the pyruvate dehydrogenase complex in these metabolic conditions. It was further found that feeding rats WY-14,643, a selective agonist for the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), also induced large increases in pyruvate dehydrogenase kinase activity, PDK4 protein, and PDK4 mRNA in gastrocnemius muscle. Since long-chain fatty acids activate PPAR-alpha endogenously, increased levels of these compounds in starvation and diabetes may signal increased expression of PDK4 in skeletal muscle.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3