Pathophysiology of Neuropathic Pain in Type 2 Diabetes

Author:

Chao Chi-Chao1,Tseng Ming-Tsung2,Lin Ya-Ju3,Yang Wei-Shiung4,Hsieh Song-Chou4,Lin Yea-Huey1,Chiu Ming-Jang1,Chang Yang-Chyuan5,Hsieh Sung-Tsang16

Affiliation:

1. Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan;

2. Section of Neurology, Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan;

3. Department of Neurology, Mackay Memorial Hospital, Taipei, Taiwan;

4. Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan;

5. Section of Neurology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan;

6. Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.

Abstract

OBJECTIVE Neuropathic pain due to small-fiber sensory neuropathy in type 2 diabetes can be diagnosed by skin biopsy with quantification of intra-epidermal nerve fiber (IENF) density. There is, however, a lack of noninvasive physiological assessment. Contact heat–evoked potential (CHEP) is a newly developed approach to record cerebral responses of Aδ fiber–mediated thermonociceptive stimuli. We investigated the diagnostic role of CHEP. RESEARCH DESIGN AND METHODS From 2006 to 2009, there were 32 type 2 diabetic patients (20 males and 12 females, aged 51.63 ± 10.93 years) with skin denervation and neuropathic pain. CHEPs were recorded with heat stimulations at the distal leg, where skin biopsy was performed. RESULTS CHEP amplitude was reduced in patients compared with age- and sex-matched control subjects (14.8 ± 15.6 vs. 33.7 ± 10.1 μV, P < 0.001). Abnormal CHEP patterns (reduced amplitude or prolonged latency) were noted in 81.3% of these patients. The CHEP amplitude was the most significant parameter correlated with IENF density (P = 0.003) and pain perception to contact heat stimuli (P = 0.019) on multiple linear regression models. An excitability index was derived by calculating the ratio of the CHEP amplitude over the IENF density. This excitability index was higher in diabetic patients than in control subjects (P = 0.023), indicating enhanced brain activities in neuropathic pain. Among different neuropathic pain symptoms, the subgroup with evoked pain had higher CHEP amplitudes than the subgroup without evoked pain (P = 0.011). CONCLUSIONS CHEP offers a noninvasive approach to evaluate the degeneration of thermonociceptive nerves in diabetic neuropathy by providing physiological correlates of skin denervation and neuropathic pain.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3