Loss of Cyp8b1 Improves Glucose Homeostasis by Increasing GLP-1

Author:

Kaur Achint1,Patankar Jay V.1,de Haan Willeke1,Ruddle Piers1,Wijesekara Nadeeja1,Groen Albert K.2,Verchere C. Bruce3,Singaraja Roshni R.4,Hayden Michael R.1

Affiliation:

1. Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada

2. Departments of Pediatrics and Laboratory Medicine, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, Groningen, the Netherlands

3. Departments of Surgery and Pathology and Laboratory Medicine, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada

4. A*STAR (Agency for Science, Technology and Research) Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

Abstract

Besides their role in facilitating lipid absorption, bile acids are increasingly being recognized as signaling molecules that activate cell-signaling receptors. Targeted disruption of the sterol 12α-hydroxylase gene (Cyp8b1) results in complete absence of cholic acid (CA) and its derivatives. Here we investigate the effect of Cyp8b1 deletion on glucose homeostasis. Absence of Cyp8b1 results in improved glucose tolerance, insulin sensitivity, and β-cell function, mediated by absence of CA in Cyp8b1−/− mice. In addition, we show that reduced intestinal fat absorption in the absence of biliary CA leads to increased free fatty acids reaching the ileal L cells. This correlates with increased secretion of the incretin hormone GLP-1. GLP-1, in turn, increases the biosynthesis and secretion of insulin from β-cells, leading to the improved glucose tolerance observed in the Cyp8b1−/− mice. Thus, our data elucidate the importance of Cyp8b1 inhibition on the regulation of glucose metabolism.

Funder

Canadian Institutes of Health Research

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3