Prevention of Diabetic Vascular Dysfunction by Guanidines: Inhibition of Nitric Oxide Synthase Versus Advanced Glycation End-Product Formation

Author:

Tilton Ronald G1,Chang Katherine1,Hasan Khalid S1,Smith Samuel R1,Petrash J Mark1,Misko Thomas P1,Moore William M1,Currie Mark G1,Corbett John A1,McDaniel Michael L1,Williamson Joseph R1

Affiliation:

1. Departments of Ophthalmology, Pathology, and Pediatrics, Washington University School of Medicine, and the Department of Molecular Pharmacology, Monsanto Corporate Research St. Louis, Missouri

Abstract

This study was undertaken to compare the ability of two guanidine compounds (aminoguanidine and methylguanidine), with different in vitro effects on NO synthase activity and AGE formation, to inhibit diabetic vascular dysfunction developing early after the onset of diabetes. In rats with STZ-induced diabetes of 5-wk duration, regional vascular [125I]albumin permeation was increased about two- to threefold in ocular tissues, sciatic nerve, and aorta; in general, both guanidine compounds normalized albumin permeation in diabetic rats without affecting it in controls. Methylguanidine was only ∼7% as effective as aminoguanidine as an inhibitor of AGE formation from L-lysine and G6P; both compounds were poor inhibitors of AR. Methylguanidine was ∼1–5% as potent as aminoguanidine and L-NMMA as an inhibitor of the cytokine- and endotoxin-inducible isoform of NO synthase. In contrast, the potency of methylguanidine as an inhibitor of the constitutive isoform of NO synthase was comparable to that of aminoguanidine, and both guanidine compounds were much less effective than L-NMMA. These observations suggest a role for a relative or absolute increase in NO production in the pathogenesis of early diabetic vascular dysfunction and raise the possibility that inhibition of diabetic vascular functional changes by aminoguanidine may reflect inhibition of NO synthase activity rather than, or in addition to, prevention of AGE formation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3