A Second Pathway for Regeneration of Adult Exocrine and Endocrine Pancreas: A Possible Recapitulation of Embryonic Development

Author:

Bonner-Weir Susan1,Baxter Leslie A1,Schuppin George T1,Smith Fannie E1

Affiliation:

1. Joslin Diabetes Center and Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts

Abstract

Substantial regeneration of both the endocrine and exocrine pancreas occurs after a 90% partial pancreatectomy in the young adult rat. We have reported previously that replication of preexisting islet and exocrine cells is enhanced 3- to 4-fold. Here, we report a second pathway of regeneration, that of proliferation and differentiation of precursor cells in the ductal epithelium. As shown with in vivo pulse labeling using 5-bromo-2′-deoxyuridine, an expansion of the ductal epithelium occurs. Proliferation is seen first in the common pancreatic duct and sequentially in smaller ducts of the ductal tree as focal areas of proliferation small ductules form. By 60 h after pancreatectomy, only these focal areas show heavy 5-bromo-2′-deoxyuridine staining. These proliferating ductules comprise 12.8% of the pancreatic volume at 3 days after pancreatectomy but are uncommon at 7 days after pancreatectomy. Coincident with the appearance and disappearance of these regions was a 3.5-fold increased growth of the pancreatic remnant compared with its equivalent of sham animals. These small ductules differentiate into new pancreatic islets and exocrine tissue, forming new lobules of pancreas that are indistinguishable from the preexisting ones. This second pathway of rapid regeneration recapitulates embryonic development in its pattern of ductal proliferation and subsequent differentiation. Furthermore, these studies provide evidence of the presence of precursor/stem cells in the adult pancreas.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3