Contributions of Sodium-Hydrogen Exchanger 1 and Mitogen-Activated Protein Kinases to Enhanced Retinal Venular Constriction to Endothelin-1 in Diabetes

Author:

Chen Yen-Lin1,Ren Yi1,Rosa Robert H.12,Kuo Lih1,Hein Travis W.1ORCID

Affiliation:

1. Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX

2. Department of Ophthalmology, Baylor Scott & White Eye Institute, Temple, TX

Abstract

Diabetes elevates endothelin-1 (ET-1) in the vitreous and enhances constriction of retinal venules to this peptide. However, mechanisms contributing to ET-1–induced constriction of retinal venules are incompletely understood. We examined roles of sodium-hydrogen exchanger 1 (NHE1), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and extracellular calcium (Ca2+) in retinal venular constriction to ET-1 and the impact of diabetes on these signaling molecules. Retinal venules were isolated from control pigs and pigs with streptozocin-induced diabetes for in vitro studies. ET-1–induced vasoconstriction was abolished in the absence of extracellular Ca2+ and sensitive to c-Jun N-terminal kinase (JNK) inhibitor SP600125 but unaffected by extracellular signal–regulated kinase (ERK) inhibitor PD98059, p38 kinase inhibitor SB203580, or broad-spectrum PKC inhibitor Gö 6983. Diabetes (after 2 weeks) enhanced venular constriction to ET-1, which was insensitive to PD98059 and Gö 6983 but was prevented by NHE1 inhibitor cariporide, SB203580, and SP600125. In conclusion, extracellular Ca2+ entry and activation of JNK, independent of ERK and PKC, mediate constriction of retinal venules to ET-1. Diabetes activates p38 MAPK and NHE1, which cause enhanced venular constriction to ET-1. Treatments targeting these vascular molecules may lessen retinal complications in early diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference62 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3