Cellular Energy Sensing and Metabolism—Implications for Treating Diabetes: The 2017 Outstanding Scientific Achievement Award Lecture

Author:

Steinberg Gregory R.1ORCID

Affiliation:

1. Division of Endocrinology and Metabolism, Department of Medicine, and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada

Abstract

The Outstanding Scientific Achievement Award recognizes distinguished scientific achievement in the field of diabetes, taking into consideration independence of thought and originality. Gregory R. Steinberg, PhD, professor of medicine, Canada Research Chair, J. Bruce Duncan Endowed Chair in Metabolic Diseases, and codirector of the Metabolism and Childhood Obesity Research Program at McMaster University, Hamilton, Ontario, Canada, received the prestigious award at the American Diabetes Association’s 77th Scientific Sessions, 9–13 June 2017, in San Diego, CA. He presented the Outstanding Scientific Achievement Award Lecture, “Cellular Energy Sensing and Metabolism—Implications for Treating Diabetes,” on Monday, 12 June 2017. The survival of all cells is dependent on the constant challenge to match energetic demands with nutrient availability, a task that is mediated through a highly conserved network of metabolic fuel sensors that orchestrate both cellular and whole-organism energy balance. A mismatch between cellular energy demand and nutrient availability is a key factor contributing to the development of type 2 diabetes; thus, understanding the fundamental mechanisms by which cells sense nutrient availability and demand may lead to the development of new treatments. Glucose-lowering therapies, such as caloric restriction, exercise, and metformin, all induce an energetic challenge that results in the activation of the cellular energy sensor AMP-activated protein kinase (AMPK). Activation of AMPK in turn suppresses lipid synthesis and inflammation while increasing glucose uptake, fatty acid oxidation, and mitochondrial function. In contrast, high levels of nutrient availability suppress AMPK activity while also increasing the production of peripheral serotonin, a gut-derived endocrine factor that suppresses β-adrenergic–induced activation of brown adipose tissue. Identifying new ways to manipulate these two ancient fuel gauges by activating AMPK and inhibiting peripheral serotonin may lead to the development of new therapies for treating type 2 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference62 articles.

1. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling;Fu;Cell Metab,2012

2. Mechanisms for insulin resistance: common threads and missing links;Samuel;Cell,2012

3. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin;Knowler;N Engl J Med,2002

4. Role of AMP-activated protein kinase in mechanism of metformin action;Zhou;J Clin Invest,2001

5. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise;Winder;Am J Physiol,1996

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3