The Early Pathogenesis of Diabetic Retinopathy and Its Attenuation by Sodium–Glucose Transporter 2 Inhibitors

Author:

Yamato Mayumi1ORCID,Kato Nao1,Yamada Ken-ichi1,Inoguchi Toyoshi2ORCID

Affiliation:

1. 1Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan

2. 2Fukuoka City Health Promotion Support Center, Fukuoka City Medical Association, Fukuoka, Japan

Abstract

The early pathogenetic mechanism of diabetic retinopathy (DR) and its treatment remain unclear. Therefore, we used streptozotocin-induced diabetic mice to investigate the early pathogenic alterations in DR and the protective effect of sodium–glucose cotransporter 2 (SGLT2) inhibitors against these alterations. Retinal vascular leakage was assessed by dextran fluorescence angiography. Retinal thickness and vascular leakage were increased 2 and 4 weeks after onset of diabetes, respectively. Immunostaining showed that morphological change of microglia (amoeboid form) was observed at 2 weeks. Subsequently, increased angiopoietin-2 expression, simultaneous loss of pericytes and endothelial cells, decreased vessel density, retinal hypoxia, and increased vascular endothelial growth factor (VEGF)-A/VEGF receptor system occurred at 4 weeks. SGLT2 inhibitors (luseogliflozin and ipragliflozin) had a significant protective effect on retinal vascular leakage and retinal thickness at a low dose that did not show glucose-lowering effects. Furthermore, both inhibitors at this dose attenuated microglia morphological changes and these early pathogenic alterations in DR. In vitro study showed both inhibitors attenuated the lipopolysaccharide-induced activation of primary microglia, along with morphological changes toward an inactive form, suggesting the direct inhibitory effect of SGLT2 inhibitors on microglia. In summary, SGLT2 inhibitors may directly prevent early pathogenic mechanisms, thereby potentially playing a role in preventing DR. Article Highlights

Funder

Astellas Pharma Inc.

AMED-CREST grant

JSPS KAKENHI grants

Taisho Pharmaceutical Co., Ltd.

Takeda Science Foundation

Publisher

American Diabetes Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3