Coexpression of the Type 2 Diabetes Susceptibility Gene Variants KCNJ11 E23K and ABCC8 S1369A Alter the ATP and Sulfonylurea Sensitivities of the ATP-Sensitive K+ Channel

Author:

Hamming Kevin S.C.1,Soliman Daniel1,Matemisz Laura C.1,Niazi Omid1,Lang Yiqiao1,Gloyn Anna L.2,Light Peter E.1

Affiliation:

1. Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada;

2. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K.

Abstract

OBJECTIVE In the pancreatic β-cell, ATP-sensitive K+ (KATP) channels couple metabolism with excitability and consist of Kir6.2 and SUR1 subunits encoded by KCNJ11 and ABCC8, respectively. Sulfonylureas, which inhibit the KATP channel, are used to treat type 2 diabetes. Rare activating mutations cause neonatal diabetes, whereas the common variants, E23K in KCNJ11 and S1369A in ABCC8, are in strong linkage disequilibrium, constituting a haplotype that predisposes to type 2 diabetes. To date it has not been possible to establish which of these represents the etiological variant, and functional studies are inconsistent. Furthermore, there have been no studies of the S1369A variant or the combined effect of the two on KATP channel function. RESEARCH DESIGN AND METHODS The patch-clamp technique was used to study the nucleotide sensitivity and sulfonylurea inhibition of recombinant human KATP channels containing either the K23/A1369 or E23/S1369 variants. RESULTS ATP sensitivity of the KATP channel was decreased in the K23/A1369 variant (half-maximal inhibitory concentration [IC50] = 8.0 vs. 2.5 μmol/l for the E23/S1369 variant), although there was no difference in ADP sensitivity. The K23/A1369 variant also displayed increased inhibition by gliclazide, an A-site sulfonylurea drug (IC50 = 52.7 vs. 188.7 nmol/l for the E23/S1369 variant), but not by glibenclamide (AB site) or repaglinide (B site). CONCLUSIONS Our findings indicate that the common K23/A1369 variant KATP channel displays decreased ATP inhibition that may contribute to the observed increased risk for type 2 diabetes. Moreover, the increased sensitivity of the K23/A1369 variant to the A-site sulfonylurea drug gliclazide may provide a pharmacogenomic therapeutic approach for patients with type 2 diabetes who are homozygous for both risk alleles.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3