Glucose Transport: Pivotal Step in Insulin Action

Author:

Kahn Barbara B1

Affiliation:

1. Harvard Thorndike Research Laboratory and Department of Medicine at Harvard Medical School and Beth Israel Hospital Boston, Massachusetts

Abstract

The effect of insulin to acutely stimulate glucose uptake into muscle and adipose tissue is essential for normal glucose homeostasis. The GLUT4 glucose transporter is a major mediator of this action, and insulin recruits GLUT4 from an intracellular pool to the plasma membrane. An important pathologic feature of obesity, NIDDM, and to a lesser extent IDDM is resistance to insulin-stimulated glucose uptake. Investigations of the mechanisms have revealed tissue-specific regulation of GLUT4 with decreased gene expression in adipose cells but not in skeletal muscle. This has led to the hypothesis that alterations in the trafficking of the GLUT4 vesicle or in the exposure or activation of the GLUT4 transporter may cause insulin resistance in skeletal muscle in obesity and diabetes. Exercise training increases GLUT4 expression in muscle in association with enhanced glucose tolerance in vivo. Transgenic mice have been created to investigate other approaches to improve insulin action on glucose transport. Overexpression of GLUT4 in adipocytes of transgenic mice increases the proportion of GLUT4 on the plasma membrane and enhances insulin sensitivity in vivo. Altering insulin signaling by overexpressing p21ras in adipocytes of transgenic mice results in increased GLUT4 on the plasma membrane in the absence of insulin and increases insulin sensitivity in vitro and in vivo. Thus, glucose transport is a pivotal step in whole-body insulin action. Strategies to increase the number of GLUT4 transporters that are functionally inserted in the plasma membrane in muscle and adipocytes may lead to new therapies to treat or prevent NIDDM.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3