Mitochondrial Glycerol-3-Phosphate Dehydrogenase: Cloning of an Alternatively Spliced Human Islet-Cell cDNA, Tissue Distribution, Physical Mapping, and Identification of a Polymorphic Genetic Marker

Author:

Ferrer Jorge1,Aoki Minoru1,Behn Philip1,Nestorowicz Ann1,Riggs Andrew1,Permutt M Alan1

Affiliation:

1. Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Washington University School of Medicine St. Louis, Missouri

Abstract

Pancreatic β-cell mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) plays a major role in glucose-induced insulin secretion. Decreased activity of this enzyme has thus been proposed to play a role in the pathogenesis of NIDDM. Cloning of human insulinoma mGPDH cDNAs disclosed the existence of two variant transcripts with different 5′ ends. Reverse transcription polymerase chain reaction (PCR) confirmed the presence of both mGPDH mRNAs in purified native human pancreatic islets and other tissues. A major 6.5-Kb mGPDH transcript was detected by Northern blot analysis in RNA from human and rat pancreatic islets, with distinctly lower levels in other human tissues, indicating that previously reported high mGPDH enzymatic activity in β-cells is determined by high transcript levels. The mGPDH gene was mapped to chromosome 2 by PCR analysis of genomic DNA from human/rodent somatic cell hybrids, and five independent overlapping yeast artificial chromosome (YAC) clones containing the mGPDH sequence were identified from the Centre d'Etude du Polymorphisme Humain YAC library. Analysis of these YAC clones identified a highly polymorphic chromosome 2q21-q33 dinucleotide repeat genetic marker (D2S141) physically linked to the mGPDH gene. These studies provide the means to investigate the role of the human mGPDH gene in the pathogenesis of NIDDM and illustrate the value of a novel strategy to identify genetic markers for diabetes candidate genes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3