Cloning, Tissue Expression, and Chromosomal Localization of SUR2, the Putative Drug-Binding Subunit of Cardiac, Skeletal Muscle, and Vascular KATP Channels

Author:

Chutkow William A1,Simon M Celeste2,Le Beau M Michelle2,Burant Charles F2

Affiliation:

1. Department of Molecular Genetics and Cell Biology, University of Chicago Chicago, Illinois

2. Department of Medicine, The Howard Hughes Medical Institute Chicago, Illinois

Abstract

ATP-sensitive inwardly rectifying potassium channels are expressed in a variety of tissues, including heart, skeletal, and smooth muscle, and pancreatic β-cells. Physiological and pharmacological studies suggest the presence of distinct KATP channels in these tissues. Recently, the KATP channel of β-cells has been reconstituted in functional form by coexpression of SUR, the sulfonylurea-binding protein, and the inwardly rectifying K+ channel subunit, KIR6.2. In this article, we describe the isolation of cDNAs encoding SUR-like proteins from mouse, SUR2A and SUR2B. Northern blotting showed that the highest expression of the SUR2 isoforms is in the heart and skeletal muscle, with lower levels in all other tissues. By reverse transcription-polymerase chain reaction, SUR2B is ubiquitously expressed, while the apparently alternatively spliced variant, SUR2A, is expressed exclusively in heart. In situ hybridization shows that the SUR2 isoforms are expressed in the parenchyma of the heart and skeletal muscle and in the vascular structures of other tissues. Human SUR2 was localized to chromosome 12, p12.1 by fluorescent in situ hybridization. The structure of the predicted protein and expression pattern of SUR2 suggests that it is the drug-binding channel-modulating subunit of the extrapancreatic KATP channel. Differences in sequence between SUR and between SUR2 isoforms may underlie the tissue-specific pharmacology of the KATP channel.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3