Normalization by Insulin Treatment of Low Mitochondrial Glycerol Phosphate Dehydrogenase and Pyruvate Carboxylase in Pancreatic Islets of the GK Rat

Author:

MacDonald Michael J1,Efendic Suad2,Ostenson Claes-Goran2

Affiliation:

1. University of Wisconsin Childrens Diabetes Center Karolinska Hospital and Institute Stockholm, Sweden

2. Madison, Wisconsin, Department of Endocrinology Karolinska Hospital and Institute Stockholm, Sweden

Abstract

The enzyme activity of the mitochondrial glycerol phosphate dehydrogenase (mGPD) in the pancreatic islet has been reported to be less than one-half of normal in the Goto-Kakizaki (GK) rat, a genetic model of NIDDM. In the current study, mGPD enzyme activity and the amount of mGPD protein, as judged by Western analysis, were 35–40% of normal in the islets of these animals. With the exception of pyruvate carboxylase, the activities of other enzymes were not abnormal. The assayable activity and amount of pyruvate carboxylase protein were decreased ∼50% in the islets of the GK rats. Because mGPD, which is the key enzyme of the glycerol phosphate shuttle, and pyruvate carboxylase, which is the key component of the pyruvate malate shuttle, have been proposed to be essential for stimulus-secretion coupling in the pancreatic β-cell, an important question is whether the decreases in these enzymes have a causal role in the hyperglycemia or whether the diabetic syndrome caused the decreases. To attempt to differentiate between these two possibilities, GK rats were treated with insulin to normalize their blood sugars. The activities of both mGPD and pyruvate carboxylase were also normalized by insulin treatment. An incidental discovery of this study was the identification of a high level of propionyl-CoA carboxylase activity and a lesser amount of methylcrotonyl-CoA carboxylase activity in pancreatic islets. These enzymes were normal in the islets of the GK rats. This is the first report on the presence of these two carboxylases in the islet and of low pyruvate carboxylase activity in the islet in NIDDM. We conclude that the decreased mGPD and pyruvate carboxylase in the pancreatic islet of the GK rat result from the diabetic syndrome.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3