Role of Kinins in the Pathophysiology of Myocardial Ischemia: In Vitro and In Vivo Studies

Author:

Linz Wolfgang1,Wiemer Gabriele1,Schölkens Bernward A1

Affiliation:

1. Hoechst-Marion-Roussel, TD Cardiovascular Agents (H821) D-65926 FrankfurtTMain, Germany

Abstract

In ischemia, the heart generates and releases kinins as mediators that seem to have cardioprotective actions. Kinin-generating pathways are present in the heart. Kininogen, kininogenases, kinins, and B2 kinin receptors can be measured in cardiac tissue. Kinins are released under conditions of ischemia. In anesthetized rats and dogs with coronary artery ligation and in human patients with myocardial infarction, kinin plasma levels are increased. In isolated rat hearts, the outflow of kinins is enhanced during ischemia but markedly attenuated after deendothelialization, pointing to the coronary vascular endothelium as the main possible source. Kinins administered locally exert beneficial cardiac effects. In isolated rat hearts with ischemia-reperfusion injuries, perfusion with bradykinin (BK) reduces the duration and incidence of ventricular fibrillation, improves cardiodynamics, reduces release of cytosolic enzymes, and preserves energy-rich phosphates and glycogen stores. In anesthetized animals, intracoronary BK is followed by comparable beneficial changes and limits infarct size. Inhibition of breakdown of BK and related peptides induces beneficial cardiac effects. Treatment with ACE inhibitors such as ramipril increases cardiac kinin levels and reduces postischemic reperfusion injuries in isolated rat hearts and infarct size in anesthetized animals. The importance of an intact endothelium that continuously generates kinins is supported by observations that basal and ramipril-in-duced release of kinins and PGI2 is markedly reduced after deendothelialization of isolated hearts. Blockade of B2 kinin receptors increases ischemia-induced effects. Endothelial formation of NO and P6I2 by ACE inhibition is prevented by the specific B2 kinin receptor antagonist icatibant. In isolated hearts, ischemia-reperfusion injuries deteriorate with icatibant, which also abolishes the cardioprotective effects of ACE inhibitors and of exogenous BK. Infarct size reduction by ACE inhibitors and by BK in anesthetized animals is reversed by icatibant. Kinins contribute to the cardioprotective effects associated with ischemie preconditioning because preconditioning or BK-induced antiarrhythmic and infarct sizelimiting effects are attenuated by icatibant. In conclusion, kinins may act as mediators of endogenous cardioprotective mechanisms. Kinins are generated and released during ischemia, with subsequent formation of PGI2 and NO probably derived mainly from the coronary vascular endothelium. Their cardioprotective profile resembles that of ACE inhibitors.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3