Expression and Functional Activity of Glucagon, Glucagon-Like Peptide I, and Glucose-Dependent Insulinotropic Peptide Receptors in Rat Pancreatic Islet Cells

Author:

Moens Karen1,Heimberg Harry1,Flamez Daisy1,Huypens Peter1,Quartier Erik1,Ling Zhidong1,Pipeleers Daniel1,Gremlich Sandrine1,Thorens Bernard1,Schuit Frans1

Affiliation:

1. Diabetes Research Center, Vrrje Universiteit Brussel Brussels, Belgium Institut de Pharmacologie, Université de Lausanne Lausanne, Switzerland

Abstract

Rat pancreatic α- and β-cells are critically dependent on hormonal signals generating cyclic AMP (cAMP) as a synergistic messenger for nutrient-induced hormone release. Several peptides of the glucagon-secretin family have been proposed as physiological ligands for cAMP production in β-cells, but their relative importance for islet function is still unknown. The present study shows expression at the RNA level in β-cells of receptors for glucagon, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide I(7-36) amide (GLP-I), while RNA from islet α-cells hybridized only with GIP receptor cDNA. Western blots confirmed that GLP-I receptors were expressed in β-cells and not in α-cells. Receptor activity, measured as cellular cAMP production after exposing islet β-cells for 15 min to a range of peptide concentrations, was already detected using 10 pmol/l GLP-I and 50 pmol/l GIP but required 1 nmol/l glucagon. EC50 values of GLP-I- and GIP-induced cAMP formation were comparable (0.2 nmol/l) and 45-fold lower than the EC50 of glucagon (9 nmol/l). Maximal stimulation of cAMP production was comparable for the three peptides. In purified α-cells, 1 nmol/l GLP-I failed to increase cAMP levels, while 10 pmol/l to 10 nmol/l GIP exerted similar stimulatory effects as in β-cells. In conclusion, these data show that stimulation of glucagon, GLP-I, and GIP receptors in rat β-cells causes cAMP production required for insulin release, while adenylate cyclase in α-cells is positively regulated by GIP.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3