Resistin Impairs Insulin-Evoked Vasodilation

Author:

Gentile Maria Teresa1,Vecchione Carmine1,Marino Gennaro1,Aretini Alessandra1,Di Pardo Alba1,Antenucci Giovanna1,Maffei Angelo1,Cifelli Giuseppe1,Iorio Luca1,Landolfi Alessandro1,Frati Giacomo2,Lembo Giuseppe12

Affiliation:

1. Department of Angio-Cardio-Neurology, Neuromed Institute, Pozzilli, Italy

2. Department of Experimental Medicine and Pathology, La Sapienza University of Rome, Rome, Italy

Abstract

OBJECTIVE—Since vascular dysfunction is a main trait of obese subjects, in the present study we evaluated the vascular impact of resistin, a recently discovered hormone markedly increased in obesity. RESEARCH DESIGN AND METHODS—We performed our analysis on aortic and mesenteric segments from young and old C57BL/6 mice and on cultured endothelial cells. Resistin-induced vascular effect was evaluated in vitro and in vivo. Molecular analyses were performed by immunoprecipitation and Western blotting. RESULTS—Recombinant murine resistin did not induce changes in either basal vascular tone or phenylephrine-induced vascular contraction. In contrast, both in vivo and in vitro administration of resistin significantly impaired dose-dependent insulin-evoked vasodilation by reducing endothelial nitric oxide synthase (eNOS) enzymatic activity. This effect of resistin was selective for insulin vascular action, since vasodilatation induced by increasing doses of acetylcholine or nitroglycerin was not influenced by the hormone. Molecular analysis of endothelial cells further detailed resistin-induced vascular resistance by showing impairment of insulin-evoked AKT and eNOS phosphorylations after exposure to resistin. Even this latter abnormality is selective of insulin signaling since AKT/eNOS phosphorylations are normally activated during acetylcholine stimulation. More important, the resistin-induced endothelial dysfunction depends on resistin's ability to alter insulin receptor substrate (IRS)-1 tyrosine/serine phosphorylation and its consequent interaction with phosphatidylinositol 3-kinase. CONCLUSIONS—Our results demonstrate that resistin is able to induce a selective vascular insulin resistance-impairing endothelial IRS-1 signaling pathway that leads to eNOS activation and vasodilation.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3