Regulation of Lipolytic Response and Energy Balance by Melanocortin 2 Receptor Accessory Protein (MRAP) in Adipocytes

Author:

Zhang Xiaodong12,Saarinen Alicia M.2,Campbell Latoya E.3,De Filippis Elena A.24,Liu Jun124ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, AZ

2. HEALth Program, Mayo Clinic, Scottsdale, AZ

3. School of Life Sciences, Arizona State University, Tempe, AZ

4. Division of Endocrinology, Mayo Clinic, Scottsdale, AZ

Abstract

Melanocortin 2 receptor accessory protein (MRAP) is highly expressed in adrenal gland and adipose tissue. In adrenal cells, MRAP is essential for adrenocorticotropic hormone (ACTH)–induced activation of the cAMP/protein kinase A (PKA) pathway by melanocortin 2 receptor (MC2R), leading to glucocorticoid production and secretion. Although ACTH was known to stimulate PKA-dependent lipolysis, the functional involvement of MRAP in adipocyte metabolism remains incompletely defined. Herein, we found that knockdown or overexpression of MRAP in 3T3-L1 adipocytes reduced or increased ACTH-induced lipolysis, respectively. Moreover, an unbiased proteomics screen and coimmunoprecipitation analysis identified Gαs as a novel interacting partner of MRAP. An MRAP mutant disabled in Gαs association failed to augment the activation of PKA and lipolytic response to ACTH. Furthermore, compared with wild-type mice, transgenic mice (aP2-MRAP) overexpressing MRAP fat specifically exhibited increased lipolytic response to ACTH. When fed a high-fat diet (HFD), the transgenic mice displayed a significant decrease in the gain of adiposity and body weight as well as an improvement in glucose and insulin tolerance. These phenotypes were accompanied by increased adipose expression of genes for mitochondrial fatty acid oxidation and thermogenesis, and overall energy expenditure. Collectively, our data strongly suggest that MRAP plays a critical role in the regulation of ACTH-induced adipose lipolysis and whole-body energy balance.

Funder

Arizona Biomedical Research Commission

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3