Targeted Disruption of Pancreatic-Derived Factor (PANDER, FAM3B) Impairs Pancreatic β-Cell Function

Author:

Robert-Cooperman Claudia E.1,Carnegie Jason R.1,Wilson Camella G.2,Yang Jichun3,Cook Joshua R.2,Wu Jianmei1,Young Robert A.1,Wolf Bryan A.12,Burkhardt Brant R.1

Affiliation:

1. Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania;

2. University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania;

3. Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Peking University Diabetes Center, Beijing, China.

Abstract

OBJECTIVE Pancreatic-derived factor (PANDER, FAM3B) is a pancreatic islet-specific cytokine-like protein that is secreted from β-cells upon glucose stimulation. The biological function of PANDER is unknown, and to address this we generated and characterized a PANDER knockout mouse. RESEARCH DESIGN AND METHODS To generate the PANDER knockout mouse, the PANDER gene was disrupted and its expression was inhibited by homologous recombination via replacement of the first two exons, secretion signal peptide and transcriptional start site, with the neomycin gene. PANDER−/− mice were then phenotyped by a number of in vitro and in vivo tests to evaluate potential effects on glucose regulation, insulin sensitivity, and β-cell morphology and function. RESULTS Glucose tolerance tests demonstrated significantly higher blood glucose levels in PANDER−/− versus wild-type male mice. To identify the mechanism of the glucose intolerance, insulin sensitivity and pancreatic β-cell function were examined. Hyperinsulinemic-euglycemic clamps and insulin tolerance testing showed similar insulin sensitivity for both the PANDER−/− and wild-type mice. The in vivo insulin response following intraperitoneal glucose injection surprisingly produced significantly higher insulin levels in the PANDER−/− mice, whereas insulin release was blunted with arginine administration. Islet perifusion and calcium imaging studies showed abnormal responses of the PANDER−/− islets to glucose stimulation. In contrast, neither islet architecture nor insulin content was impacted by the loss of PANDER. Interestingly, the elevated insulin levels identified in vivo were attributed to decreased hepatic insulin clearance in the PANDER−/− islets. Taken together, these results demonstrated decreased pancreatic β-cell function in the PANDER−/− mouse. CONCLUSIONS These results support a potential role of PANDER in the pancreatic β-cell for regulation or facilitation of insulin secretion.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3