Regulatory Role of NF-κB on HDAC2 and Tau Hyperphosphorylation in Diabetic Encephalopathy and the Therapeutic Potential of Luteolin

Author:

Fu Qian1,Song Yilin1,Ling Zhaoke1,Liu Jie1,Kong Qingqing1,Hao Xin1,Xu Ting1,Zhang Qiang2,Liu Yi13ORCID

Affiliation:

1. 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China

2. 2Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China

3. 3Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China

Abstract

Diabetic encephalopathy (DE) is a severe complication of the central nervous system associated with diabetes. In this study, we investigated the regulatory role of mammalian target of rapamycin (mTOR) on nuclear factor κB (NF-κB) in mice with DE, and the neuroprotective effect and therapeutic mechanisms of luteolin, a natural flavonoid compound with anti-inflammatory, antioxidant, and neuroprotective properties. The results indicated that treatment with luteolin improved the degree of cognitive impairment in mice with DE. It also decreased the levels of phosphorylated mTOR, phosphorylated NF-κB, and histone deacetylase 2 (HDAC2) and increased the expression of brain-derived neurotrophic factor and synaptic-related proteins. Furthermore, protein-protein interaction and the Gene Ontology analysis revealed that luteolin was involved in the regulatory network of HDAC2 expression through the mTOR/NF-κB signaling cascade. Our bioinformatics and molecular docking results indicated that luteolin may also directly target HDAC2, as an HDAC2 inhibitor, to alleviate DE, complementing mTOR/NF-κB signaling inhibition. Analysis of luteolin’s target proteins and their interactions suggest an effect on HDAC2 and cognition. In conclusion, HDAC2 and tau hyperphosphorylation are regulated by the mTOR/NF-κB signaling cascade in DE, and luteolin is found to reverse these effects, demonstrating its protective role in DE. Article Highlights

Funder

National Natural Science Foundation of China

Publisher

American Diabetes Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3