Decreased Cerebrovascular Brain-Derived Neurotrophic Factor–Mediated Neuroprotection in the Diabetic Brain

Author:

Navaratna Deepti1,Guo Shu-zhen1,Hayakawa Kazhuhide1,Wang Xiaoying1,Gerhardinger Chiara2,Lo Eng H.1

Affiliation:

1. Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts

2. Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts

Abstract

OBJECTIVE Diabetes is an independent risk factor for stroke. However, the underlying mechanism of how diabetes confers that this risk is not fully understood. We hypothesize that secretion of neurotrophic factors by the cerebral endothelium, such as brain-derived neurotrophic factor (BDNF), is suppressed in diabetes. Consequently, such accrued neuroprotective deficits make neurons more vulnerable to injury. RESEARCH DESIGN AND METHODS We examined BDNF protein levels in a streptozotocin-induced rat model of diabetes by Western blotting and immunohistochemistry. Levels of total and secreted BDNF protein were quantified in human brain microvascular endothelial cells after exposure to advanced glycation end product (AGE)-BSA by enzyme-linked immunosorbent assay and immunocytochemistry. In media transfer experiments, the neuroprotective efficacy of conditioned media from normal healthy endothelial cells was compared with AGE-treated endothelial cells in an in vitro hypoxic injury model. RESULTS Cerebrovascular BDNF protein was reduced in the cortical endothelium in 6-month diabetic rats. Immunohistochemical analysis of 6-week diabetic brain sections showed that the reduction of BDNF occurs early after induction of diabetes. Treatment of brain microvascular endothelial cells with AGE caused a similar reduction in BDNF protein and secretion in an extracellular signal–related kinase-dependent manner. In media transfer experiments, conditioned media from AGE-treated endothelial cells were less neuroprotective against hypoxic injury because of a decrease in secreted BDNF. CONCLUSIONS Taken together, our findings suggest that a progressive depletion of microvascular neuroprotection in diabetes elevates the risk of neuronal injury for a variety of central nervous system diseases, including stroke and neurodegeneration.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3