Activation of the AMPK-FOXO3 Pathway Reduces Fatty Acid–Induced Increase in Intracellular Reactive Oxygen Species by Upregulating Thioredoxin

Author:

Li Xiao-Nan123,Song Jun123,Zhang Lin12,LeMaire Scott A.12,Hou Xiaoyang123,Zhang Cheng123,Coselli Joseph S.12,Chen Li3,Wang Xing Li12,Zhang Yun3,Shen Ying H.12

Affiliation:

1. Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas;

2. Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, Texas;

3. Qilu Hospital, Shandong University, Jinan, Shandong, China.

Abstract

OBJECTIVE Oxidative stress induced by free fatty acids contributes to the development of cardiovascular diseases in patients with metabolic syndrome. Reducing oxidative stress may attenuate these pathogenic processes. Activation of AMP-activated protein kinase (AMPK) has been reported to reduce intracellular reactive oxygen species (ROS) levels. The thioredoxin (Trx) system is a major antioxidant system. In this study, we investigated the mechanisms involved in the AMPK-mediated regulation of Trx expression and the reduction of intracellular ROS levels. RESEARCH DESIGN AND METHODS We observed that activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) significantly reduced ROS levels induced by palmitic acid in human aortic endothelial cells. Activation of AMPK increased expression of the antioxidant Trx, which mediated the ROS reduction. RT-PCR showed that AMPK regulated Trx at the transcriptional level. RESULTS Forkhead transcription factor 3 (FOXO3) was identified as the target transcription factor involved in the upregulation of Trx expression. FOXO3 bound to the Trx promoter, recruited the histone acetylase p300 to the Trx promoter, and formed a transcription activator complex, which was enhanced by AICAR treatment. AMPK activated FOXO3 by promoting its nuclear translocation. We further showed that AICAR injection increased the expression of Trx and decreased ROS production in the aortic wall of ApoE−/− mice fed a high-fat diet. CONCLUSIONS These results suggest that activation of the AMPK-FOXO3 pathway reduces ROS levels by inducing Trx expression. Thus, the AMPK-FOXO3-Trx axis may be an important defense mechanism against excessive ROS production induced by metabolic stress and could be a therapeutic target in treating cardiovascular diseases in metabolic syndrome.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3