Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Promotes Adipogenesis and Diet-Induced Obesity

Author:

Park Min1,Yi Ja-Woon1,Kim Eun-Mi1,Yoon Il-Joo1,Lee Eun-Hee1,Lee Hwa-Youn1,Ji Kon-Young1,Lee Kwang-Ho1,Jang Ji-Hun1,Oh Seung-Su1,Yun Chul-Ho1,Kim Seung-Hyung2,Lee Ki-Mo3,Song Mun-Gyu4,Kim Dong-Hoon4,Kang Hyung-Sik1

Affiliation:

1. School of Biological Sciences and Technology, Chonnam National University, Buk-gu, Gwangju, Republic of Korea

2. Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea

3. Traditional Korean Medicine Converging Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea

4. Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea

Abstract

Triggering receptor expressed on myeloid cells 2 (TREM2) is known to be involved in the anti-inflammatory response and osteoclast development. However, the role of TREM2 in adipogenesis or obesity has not yet been defined. The effect of TREM2 on adipogenesis and obesity was investigated in TREM2 transgenic (TG) mice on a high-fat diet (HFD). To block TREM2 signaling, a neutralizing fusion protein specific for TREM2 (TREM2-Ig) was used. TG mice were much more obese than wild-type mice after feeding with an HFD, independent of the quantity of food intake. These HFD-fed TG mice manifested adipocyte hypertrophy, glucose and insulin resistance, and hepatic steatosis. The expression of adipogenic regulator genes, such as peroxisome proliferator–activated receptor γ and CCAAT/enhancer-binding protein α, was markedly increased in HFD-fed TG mice. Additionally, HFD-fed TG mice exhibited decreased Wnt10b expression and increased GSK-3β (glycogen synthase kinase-3β)–mediated β-catenin phosphorylation. In contrast, the blockade of TREM2 signaling using TREM2-Ig resulted in the inhibition of adipocyte differentiation in vitro and a reduction in body weight in vivo by downregulating the expression of adipogenic regulators. Our data demonstrate that TREM2 promotes adipogenesis and diet-induced obesity by upregulating adipogenic regulators in conjunction with inhibiting the Wnt10b/β-catenin signaling pathway.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3