Diffusion Tensor Imaging Identifies Deficits in White Matter Microstructure in Subjects With Type 1 Diabetes That Correlate With Reduced Neurocognitive Function

Author:

Kodl Christopher T.1,Franc Daniel T.2,Rao Jyothi P.1,Anderson Fiona S.3,Thomas William4,Mueller Bryon A.5,Lim Kelvin O.56,Seaquist Elizabeth R.1

Affiliation:

1. Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University Of Minnesota, Minneapolis, Minnesota

2. Medical Scientist Training Program, University Of Minnesota, Minneapolis, Minnesota

3. Division of Pediatric Clinical Neuroscience, Department of Pediatrics, University Of Minnesota, Minneapolis, Minnesota

4. Division of Biostatistics, School of Public Health, University Of Minnesota, Minneapolis, Minnesota

5. Department of Psychiatry, University Of Minnesota, Minneapolis, Minnesota

6. Geriatric Research Education and Clinical Center, Minneapolis VA Medical Center, Minneapolis, Minnesota

Abstract

OBJECTIVE—Long-standing type 1 diabetes is associated with deficits on neurocognitive testing that suggest central white matter dysfunction. This study investigated whether diffusion tensor imaging (DTI), a type of magnetic resonance imaging that measures white matter integrity quantitatively, could identify white matter microstructural deficits in patients with long-standing type 1 diabetes and whether these differences would be associated with deficits found by neurocognitive tests. RESEARCH DESIGN AND METHODS—Twenty-five subjects with type 1 diabetes for at least 15 years and 25 age- and sex-matched control subjects completed DTI on a 3.0 Tesla scanner and a battery of neurocognitive tests. Fractional anisotropy was calculated for the major white matter tracts of the brain. RESULTS—Diabetic subjects had significantly lower mean fractional anisotropy than control subjects in the posterior corona radiata and the optic radiation (P < 0.002). In type 1 diabetic subjects, reduced fractional anisotropy correlated with poorer performance on the copy portion of the Rey-Osterreith Complex Figure Drawing Test and the Grooved Peg Board Test, both of which are believed to assess white matter function. Reduced fractional anisotropy also correlated with duration of diabetes and increased A1C. A history of severe hypoglycemia did not correlate with fractional anisotropy. CONCLUSIONS—DTI can detect white matter microstructural deficits in subjects with long-standing type 1 diabetes. These deficits correlate with poorer performance on selected neurocognitive tests of white matter function.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3