Chronic β-Cell Depolarization Impairs β-Cell Identity by Disrupting a Network of Ca2+-Regulated Genes

Author:

Stancill Jennifer S.12,Cartailler Jean-Philippe2,Clayton Hannah W.12,O’Connor James T.2,Dickerson Matthew T.3,Dadi Prasanna K.3,Osipovich Anna B.23,Jacobson David A.3,Magnuson Mark A.123ORCID

Affiliation:

1. Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN

2. Center for Stem Cell Biology, Vanderbilt University, Nashville, TN

3. Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN

Abstract

We used mice lacking Abcc8, a key component of the β-cell KATP-channel, to analyze the effects of a sustained elevation in the intracellular Ca2+ concentration ([Ca2+]i) on β-cell identity and gene expression. Lineage tracing analysis revealed the conversion of β-cells lacking Abcc8 into pancreatic polypeptide cells but not to α- or δ-cells. RNA-sequencing analysis of FACS-purified Abcc8−/− β-cells confirmed an increase in Ppy gene expression and revealed altered expression of more than 4,200 genes, many of which are involved in Ca2+ signaling, the maintenance of β-cell identity, and cell adhesion. The expression of S100a6 and S100a4, two highly upregulated genes, is closely correlated with membrane depolarization, suggesting their use as markers for an increase in [Ca2+]i. Moreover, a bioinformatics analysis predicts that many of the dysregulated genes are regulated by common transcription factors, one of which, Ascl1, was confirmed to be directly controlled by Ca2+ influx in β-cells. Interestingly, among the upregulated genes is Aldh1a3, a putative marker of β-cell dedifferentiation, and other genes associated with β-cell failure. Taken together, our results suggest that chronically elevated β-cell [Ca2+]i in Abcc8−/− islets contributes to the alteration of β-cell identity, islet cell numbers and morphology, and gene expression by disrupting a network of Ca2+-regulated genes.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

National Cancer Institute

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3