Ang-1 Gene Therapy Inhibits Hypoxia-Inducible Factor-1α (HIF-1α)-Prolyl-4-Hydroxylase-2, Stabilizes HIF-1α Expression, and Normalizes Immature Vasculature in db/db Mice

Author:

Chen Jian-Xiong1,Stinnett Amanda1

Affiliation:

1. From the Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, Tennessee

Abstract

OBJECTIVE— Diabetic impaired angiogenesis is associated with impairment of hypoxia-inducible factor-1α (HIF-1α) as well as vasculature maturation. We investigated the potential roles and intracellular mechanisms of angiopoietin-1 (Ang-1) gene therapy on myocardial HIF-1α stabilization and vascular maturation in db/db mice. RESEARCH DESIGN AND METHODS— db/db mice were systemically administrated adenovirus Ang-1 (Ad-CMV-Ang-1). Myocardial HIF-1α, vascular endothelial growth factor (VEGF), hemeoxygenase-1 (HO-1), endothelial nitric oxide synthase (eNOS), Akt, and HIF-1α–prolyl-4-hydroxylase-2 (PHD)2 expression were measured. Vasculature maturation, capillary and arteriole densities, and cardiac interstitial fibrosis were analyzed in the border zone of infarcted myocardium. RESULTS— Systemic administration of Ad-CMV-Ang-1 results in overexpression of Ang-1 in db/db mice hearts. Ang-1 gene therapy causes a significant increase in Akt and eNOS expression and HIF-1α stabilization. This is accompanied by a significant upregulation of VEGF and HO-1 expression. Intriguingly, Ang-1 gene therapy also leads to a significant inhibition of PHD2 expression. Smooth muscle recruitment and smooth muscle coverage in the neovessels of the border zone of infarcted myocardium are severely impaired in db/db mice compared with wild-type mice. Ang-1 gene therapy rescues these abnormalities, which leads to a dramatic increase in capillary and arteriole densities and a significant reduction of cardiac hypertrophy and interstitial fibrosis at 14 days after ischemia. Taken together, our data show that Ang-1 increases myocardial vascular maturation and angiogenesis together with suppression of PHD2 and the upregulation of HIF-1α signaling. CONCLUSIONS— Normalization of immature vasculature by Ang-1 gene therapy may represent a novel therapeutic strategy for treatment of the diabetes-associated impairment of myocardial angiogenesis.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3