Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue

Author:

Zhao Hui1,Shang Qianwen1,Pan Zhenzhen1,Bai Yang1,Li Zequn1,Zhang Huiying1,Zhang Qiu2,Guo Chun1,Zhang Lining1,Wang Qun1ORCID

Affiliation:

1. Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China

2. School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China

Abstract

Adipose-derived stem cells (ADSCs) play critical roles in controlling obesity-associated inflammation and metabolic disorders. Exosomes from ADSCs exert protective effects in several diseases, but their roles in obesity and related pathological conditions remain unclear. In this study, we showed that treatment of obese mice with ADSC-derived exosomes facilitated their metabolic homeostasis, including improved insulin sensitivity (27.8% improvement), reduced obesity, and alleviated hepatic steatosis. ADSC-derived exosomes drove alternatively activated M2 macrophage polarization, inflammation reduction, and beiging in white adipose tissue (WAT) of diet-induced obese mice. Mechanistically, exosomes from ADSCs transferred into macrophages to induce anti-inflammatory M2 phenotypes through the transactivation of arginase-1 by exosome-carried active STAT3. Moreover, M2 macrophages induced by ADSC-derived exosomes not only expressed high levels of tyrosine hydroxylase responsible for catecholamine release, but also promoted ADSC proliferation and lactate production, thereby favoring WAT beiging and homeostasis in response to high-fat challenge. These findings delineate a novel exosome-mediated mechanism for ADSC–macrophage cross talk that facilitates immune and metabolic homeostasis in WAT, thus providing potential therapy for obesity and diabetes.

Funder

National Natural Science Foundation of China

Shandong Major Research Program

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3