Intergenerational Transmission of Glucose Intolerance and Obesity by In Utero Undernutrition in Mice

Author:

Jimenez-Chillaron Josep C.1,Isganaitis Elvira1,Charalambous Marika2,Gesta Stephane1,Pentinat-Pelegrin Thais3,Faucette Ryan R.1,Otis Jessica P.1,Chow Alice1,Diaz Ruben34,Ferguson-Smith Anne2,Patti Mary-Elizabeth1

Affiliation:

1. Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts

2. Cambridge University, Cambridge, U.K

3. Hospital Sant Joan de Deu, Universitat de Barcelona, Barcelona, Spain

4. Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts

Abstract

OBJECTIVE—Low birth weight (LBW) is associated with increased risk of obesity, diabetes, and cardiovascular disease during adult life. Moreover, this programmed disease risk can progress to subsequent generations. We previously described a mouse model of LBW, produced by maternal caloric undernutrition (UN) during late gestation. LBW offspring (F1-UN generation) develop progressive obesity and impaired glucose tolerance (IGT) with aging. We aimed to determine whether such metabolic phenotypes can be transmitted to subsequent generations in an experimental model, even in the absence of altered nutrition during the second pregnancy. RESEARCH DESIGN AND METHODS—We intercrossed female and male F1 adult control (C) and UN mice and characterized metabolic phenotypes in F2 offspring. RESULTS—We demonstrate that 1) reduced birth weight progresses to F2 offspring through the paternal line (C♀-C♂ = 1.64 g; C♀-UN♂ = 1.57 g, P < 0.05; UN♀-C♂ = 1.64 g; UN♀-UN♂ = 1.60 g, P < 0.05), 2) obesity progresses through the maternal line (percent body fat: C♀-C♂ = 22.4%; C♀-UN♂ = 22.9%; UN♀-C♂ = 25.9%, P < 0.05; UN♀-UN♂ = 27.5%, P < 0.05), and 3) IGT progresses through both parental lineages (glucose tolerance test area under curve C♀-C♂ = 100; C♀-UN♂ = 122, P < 0.05; UN♀-C♂ = 131, P < 0.05; UN♀-UN♂ = 151, P < 0.05). Mechanistically, IGT in both F1 and F2 generations is linked to impaired β-cell function, explained, in part, by dysregulation of Sur1 expression. CONCLUSIONS—Maternal undernutrition during pregnancy (F0) programs reduced birth weight, IGT, and obesity in both first- and second-generation offspring. Sex-specific transmission of phenotypes implicates complex mechanisms including alterations in the maternal metabolic environment (transmaternal inheritance of obesity), gene expression mediated by developmental and epigenetic pathways (transpaternal inheritance of LBW), or both (IGT).

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3