Active Brown Adipose Tissue Is Associated With a Healthier Metabolic Phenotype in Obesity

Author:

Herz Carsten T.12,Kulterer Oana C.13,Prager Marlene1,Schmöltzer Christoph1,Langer Felix B.4,Prager Gerhard4,Marculescu Rodrig5,Kautzky-Willer Alexandra1ORCID,Hacker Marcus3,Haug Alexander R.3,Kiefer Florian W.1ORCID

Affiliation:

1. Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria

2. Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria

3. Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria

4. Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria

5. Division of Medical-Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria

Abstract

Obesity is associated with increasing cardiometabolic morbidity and mortality rates worldwide. Not everyone with obesity, however, develops metabolic complications. Brown adipose tissue (BAT) has been suggested to be a promoter of leanness and metabolic health. To date, little is known about the prevalence and metabolic function of BAT in people with severe obesity, a population at high cardiometabolic risk. In this cross-sectional study, we included 40 individuals with World Health Organization class II-III obesity (BMI ≥35 kg/m2). Using a 150-min personalized cooling protocol and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography, cold-activated BAT was detectable in 14 of the participants (35%). Cold-induced thermogenesis was significantly higher in participants with detectable BAT compared with those without. Notably, individuals with obesity and active BAT had 28.8% lower visceral fat mass despite slightly higher total fat mass compared with those without detectable BAT 18F-FDG uptake. The lower amount of visceral fat mass was accompanied by lower insulin resistance and systemic inflammation and improved nonalcoholic fatty liver disease parameters, all adjusted for age, sex, and percent body fat. Contrary to previous assumptions, we show here that a significant fraction of individuals with severe obesity has active BAT. We found that decreased BAT 18F-FDG uptake was not associated with adiposity per se but with higher visceral fat mass. In summary, active BAT is linked to a healthier metabolic phenotype in obesity.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3