Affiliation:
1. Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
2. Palo Alto Medical Foundation Research Institute, Palo Alto, California
Abstract
Nonshivering thermogenesis in brown adipose tissue (BAT) generates heat through the uncoupling of mitochondrial β-oxidation from ATP production. The principal energy source for this process is fatty acids that are either synthesized de novo in BAT or are imported from circulation. How uptake of fatty acids is mediated and regulated has remained unclear. Here, we show that fatty acid transport protein (FATP)1 is expressed on the plasma membrane of BAT and is upregulated in response to cold stimuli, concomitant with an increase in the rate of fatty acid uptake. In FATP1-null animals, basal fatty acid uptake is reduced and remains unchanged following cold exposure. As a consequence, FATP1 knockout (KO) animals display smaller lipid droplets in BAT and fail to defend their core body temperature at 4°C, despite elevated serum free fatty acid levels. Similarly, FATP1 is expressed by the BAT-derived cell line HIB-1B upon differentiation, and both fatty acid uptake and FATP1 protein levels are rapidly elevated following isoproterenol stimulation. Stimulation of fatty uptake by isoproterenol required both protein kinase A and mitogen-activated kinase signaling and is completely dependent on FATP1 expression, as small-hairpin RNA–mediated knock down of FATP1 abrogated the effect.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献