Molecular Biology of Mammalian Glucose Transporters

Author:

Bell Graeme I1,Kayano Toshiaki1,Buse John B1,Burant Charles F1,Takeda Jun1,Lin Denis1,Fukumoto Hirofumi1,Seino Susumu1

Affiliation:

1. Howard Hughes Medical Institute and Departments of Biochemistry and Molecular Biology and of Medicine, The University of Chicago Chicago, Illinois

Abstract

The oxidation of glucose represents a major source of metabolic energy for mammaliancells. However, because the plasma membrane is impermeable to polar molecules such as glucose, the cellular uptake of this important nutrient is accomplished by membrane-associated carrier proteins that bind and transfer it across the lipid bilayer. Two classes of glucose carriers have been described in mammalian cells: the Na+-glucose cotransporter and the facilitative glucose transporter. The Na+-glucose cotransporter transports glucose against its concentration gradient by coupling its uptake with the uptake of Na+ that is being transported down its concentration gradient. Facilitative glucose c rriers accelerate the transport of glucose down its concentration gradient by facilitative diffusion, a form of passive transport. cDNAs have been isolated from human tissues encoding a Na+-glucose-cotransporter protein and five functional facilitative glucosetransporter isoforms. The Na+-glucose cotransporter is expressed by absorptive epithelial cells of the small intestine and is involved in the dietary uptake of glucose. The same or a related protein may be responsible for the reabsorption of glucose by the kidney. Facilitative glucose carriers are expressed by most if not all cells. The facilitative glucose-transporter isoforms have distinct tissue distributions and biochemical properties and contribute to the precise disposal of glucose under varying physiological conditions. The GLUT1 (erythrocyte) and GLUT3 (brain) facilitative glucose-transporter isoforms may be responsible for basal or constitutive glucose uptake. The GLUT2 (liver) isoform mediates the bidirectional transport of glucose by the hepatocyte and is responsible, at least in part, for the movement of glucose out of absorptive epithelial cells into the circulation in the small intestine and kidney. This isoform may also comprise part of the glucosesensing mechanism of the insulin-producing β-cell. The subcellular localization of the GLUT4 (muscle/fat) isoform changes in response to insulin, and this isoform is responsible for most of the insulin-stimulated uptake of glucose that occurs in muscle and adipose tissue. The GLLJT5 (small intestine) facilitative glucose-transporter isoform is expressed at highest levels in the small intestine and may be involved in the transcellular transport of glucose by absorptive epithelial cells. The exon-intron organizations of the human GLUT1, GLUT2, and GLUT4 genes have been determined. In addition, the chromosomal locations of the genes encoding the Na+-dependent and facilitative glucose carriers have been determined. Restriction-fragment-length polymorphisms have also been identified at several of these loci. The isolation and characterization of cDNAs and genes for these glucose transporters will facilitate studies of their role in the pathogenesis of disorders characterized by abnormal glucose transport, including diabetes mellitus, the glucose-galactose malabsorption syndrome, and benign renal glycosuria.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3