Effect of Glimepiride on Insulin-Stimulated Glycogen Synthesis in Cultured Human Skeletal Muscle Cells

Author:

Haupt Axel1,Kausch Christiana1,Dahl Dominik1,Bachmann Oliver1,Stumvoll Michael1,Häring Hans-U.1,Matthaei Stephan1

Affiliation:

1. From the University of Tübingen, Department of Endocrinology and Metabolism, Tübingen, Germany

Abstract

OBJECTIVE—To examine the effect of glimepiride on insulin-stimulated glycogen synthesis in cultured human skeletal muscle cells in comparison with glibenclamide. RESEARCH DESIGN AND METHODS—Myotubes derived from glucose-tolerant subjects were incubated with glimepiride or glibenclamide (0–100 μmol/l) for 4 h and with or without insulin (100 nmol/l) for 2 h, and subsequently glycogen synthesis was determined. RESULTS—Glimepiride had no significant effect on basal glycogen synthesis; in contrast, glimepiride caused a dose-dependent increase of insulin-stimulated glycogen synthesis, with a maximal effect of 39.97 ± 8.4% (mean ± SEM, n = 4, P < 0,02). The time course of this glimepiride effect on insulin-stimulated glycogen synthesis showed a peak after 12 h incubation with a half maximal effect after 4 h. Preincubation of the myotubes with wortmannin (100 nmol/l), an inhibitor of phosphatidylinositol (PI)- 3 kinase, caused an inhibition of this glimepiride effect on insulin-stimulated glycogen synthesis. In contrast to glimepiride, incubation of myotubes with glibenclamide (0–100nmol/l), a second generation sulfonylurea, had no significant effect on basal or insulin-stimulated glycogen synthesis. CONCLUSIONS—Incubation of cultured human skeletal muscle cells derived from glucose-tolerant subjects with glimepiride caused a dose-dependent increase of insulin-stimulated glycogen synthesis using therapeutic glimepiride concentrations. This glimepiride effect seems to be mediated via the PI3 kinase pathway. In contrast to glimepiride, glibenclamide had no significant effect on basal or insulin-stimulated glycogen synthesis. These results suggest that glimepiride, beside its well-known effect to stimulate insulin secretion, possess an insulin-sensitizing action in cultured human skeletal muscle cells in support of the concept of an extrapancreatic action of glimepiride.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3