A Neural Network Model for Predicting Pancreas Transplant Graft Outcome

Author:

Dorsey Susan G1,Waltz Carolyn F1,Brosch Laura1,Connerney Ingrid2,Schweitzer Eugene J3,Bartlett Stephen T3

Affiliation:

1. School of Nursing, University of Maryland at Baltimore Baltimore, Maryland

2. University of Maryland Medical System, and School of Medicine Baltimore, Maryland

3. Division of Transplant Surgery, and School of Medicine Baltimore, Maryland

Abstract

OBJECTIVE To compare the results of a neural network versus a logistic regression model for predicting early (0–3 months) pancreas transplant graft survival or loss. RESEARCH DESIGN AND METHODS This study was a cross-sectional, secondary analysis of demographic and clinical data from 117 simultaneous pancreas-kidney (SPK), 35 pancreas-after-kidney (PAK), and 8 pancreas-transplant-alone (PTA) patients (n = 160). The majority of patients were men (57%) and were white (90.1%), with a mean age of 39 ± 8.09 years. Of the patients, 23 (14.4%) experienced early graft loss, which included any loss owing to technical or immunological causes, and death with a functional graft. Data were analyzed with a logistic regression model for multivariate analysis and a backpropagation neural network (BPNN) model. RESULTS A total of 12 predictor variables were chosen from literature and transplant surgeon recommendations. A logistic model with all predictor variables included correctly classified 93.53% of cases. Model sensitivity was 35.71%; specificity was 100% (pseudo-R2 0.24). Of the predictors, history of alcohol abuse (odds ratio [OR] 32.39; 95% CI 1.67–626.89), having a PAK or PTA (OR 13.6; 95% CI 2.20–84.01), and use of a nonlocal organ procurement center (OPO) (OR 4.51; 95% CI 0.78–25.96) were most closely associated with early graft loss. The BPNN model with the same 12 predictor variables correctly predicted 92.50% of cases (R2 0.71). Model sensitivity was 68%; specificity was 96%. Of the predictors, the three variables most closely associated with graft outcome in this model were recipient/donor weight difference >50 lb, having a PAK or PTA, and use of a nonlocal OPO. CONCLUSIONS First, the BPNN model correctly predicted 92.5% of graft outcomes versus the logistic model (93.53%). Second, the BPNN model rendered more accurate predictions (>0.70 = loss; <0.30 = survival) versus the logistic model (>0.50 = loss; <0.50 = survival). Third, the BPNN model was more sensitive (68%) than the logistic model (35.71%) to graft failures and demonstrated an almost threefold increase in explained variance (R2 = 0.71 vs. 0.24). These results suggest that the BPNN model is a more powerful tool for predicting early pancreas graft loss than traditional multivariate statistical models.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3