Glucose Transport and NIDDM

Author:

Garvey W Timothy1

Affiliation:

1. Section of Endocrinology, Indianapolis Veterans Administration Medical Center Indianapolis; and The Department of Medicine, Indiana University School of Medicine Indianapolis, Indiana

Abstract

Three major metabolic abnormalities contribute to hyperglycemia in non-insulin-dependent diabetes mellitus (NIDDM) including defective glucose-induced insulin secretion, elevated rates of hepatic glucose output, and insulin's impaired ability to stimulate glucose uptake in peripheral target tissues (insulin resistance). These functions involve cellular glucose transport in β-cells, liver, adipose tissue, and skeletal muscle; and, in some instances, abnormalities in glucose transporter isoforms (GLUT) specifically expressed in these tissues may constitute key biochemical lesions underlying defective glucose homeostasis. In animal models of NIDDM, suppression of GLUT2 in β-cells is correlated with loss of high-Km glucose transport and glucose-sensitive insulin secretion. Although there are no data on humans with NIDDM, GLUT2 loss would constitute an attractive mechanism for defective glucose sensing in β-cells if it can be shown that transport then becomes rate limiting for glucose metabolism. In the liver, however, hepatocyte glucose transport via GLUT2 probably plays only a permissive role in sustaining increased glucose efflux. Peripheral insulin resistance is associated with decreased glucose transport activity, the likely rate-limiting step for glucose uptake in fat and muscle. Accordingly, the insulin-responsive GLUT4 isoform expressed exclusively in insulin target tissues has been studied intensively in NIDDM. In these studies, pretranslational suppression of GLUT4 appears to be the key mechanism of insulin resistance in adipocytes. However, levels of GLUT4 protein and mRNA are normal in vastus lateralis and rectus abdominis, inferring that defects in GLUT4 functional activity or insulin-mediated translocation cause insulin resistance in muscle. Thus, the intensified study of glucose transport has provided important new insights into NIDDM pathogenesis over the past 5 yr and has presented investigators with additional intriguing hypotheses.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3