Involvement of β7 Integrin and Mucosal Addressin Cell Adhesion Molecule-1 (MAdCAM-1) in the Development of Diabetes in Nonobese Diabetic Mice

Author:

Yang Xiao-dong1,Sytwu Huey-Kang1,McDevitt Hugh O12,Michie Sara A34

Affiliation:

1. Microbiology and Immunology, Stanford University School of Medicine Stanford, California

2. Medicine, Stanford University School of Medicine Stanford, California

3. Department of Veterans Affairs, Palo Alto Health Care System, Center for Molecular Biology in Medicine Palo Alto

4. Departments of Pathology, Stanford University School of Medicine Stanford, California

Abstract

Nonobese diabetic (NOD) mice develop autoimmune-mediated lymphocytic inflammation of pancreatic islets (insulitis) that leads to β-cell destruction and development of diabetes. Inflamed islets show expression of lymphocyte α4β7 integrin and endothelial mucosal addressin cell adhesion molecule-1 (MAdCAM-1), adhesion molecules involved in tissue-selective migration of lymphocytes to mucosal lymphoid tissues. To elucidate the roles of the mucosal lymphocyte/endothelial adhesion system in the development of diabetes, we treated NOD mice with monoclonal antibody against β7 integrin or MAdCAM-1. Treatment of mice from age 7 to 28 days or 8 to 12 weeks with either antibody led to significant and long-standing protection against the spontaneous development of diabetes and insulitis. In contrast, neither treatment prevented the development of salivary gland inflammation (sialadenitis), indicating that the effect was tissue-selective. Monoclonal antibody treatment had no demonstrable effect on numbers or phenotypes of peripheral lymphocytes or on the immune response to pancreatic islet or exogenous antigens. These data indicate that lymphocyte and endothelial adhesion molecules involved in the migration of lymphocytes into mucosal lymphoid tissues play a role in the development of diabetes in NOD mice. Moreover, the results suggest that treatment of humans with antibodies against tissue-selective lymphocyte or endothelial adhesion molecules may selectively inhibit the development of autoimmune diseases such as diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3