Performance of a predictive model to identify undiagnosed diabetes in a health care setting.

Author:

Baan C A1,Ruige J B1,Stolk R P1,Witteman J C1,Dekker J M1,Heine R J1,Feskens E J1

Affiliation:

1. Department of Public Health, Erasmus University, Rotterdam, The Netherlands. baan@mgz.fgg.eur.nl

Abstract

OBJECTIVE: To develop a predictive model to identify individuals with an increased risk for undiagnosed diabetes, allowing for the availability of information within the health care system. RESEARCH DESIGN AND METHODS: A sample of participants from the Rotterdam Study (n = 1,016), aged 55-75 years, not known to have diabetes completed a questionnaire on diabetes-related symptoms and risk factors and underwent a glucose tolerance test. Predictive models were developed using stepwise logistic regression analyses with the absence or presence of newly diagnosed diabetes as the dependent variable and various items with a plausible connection to diabetes as the independent variables. The models were evaluated in another Dutch population-based study, the Hoorn Study (n = 2,364), in which the participants were aged 50-74 years. Performances of the predictive models were compared by using receiver-operator characteristics (ROC) curves. RESULTS: We developed three predictive models (PMs), PM1 contained information routinely collected by the general practitioner, while PM2 also contained variables obtainable by additional questions. The third predictive model, PM3, included variables that had to be obtained from a physical examination. These latter variables did not have additive predictive value, resulting in a PM3 similar to PM2. The area under the ROC curve was higher for PM2 than for PM1, but the 95% Cls overlapped (0.74 [0.70-0.78] and 0.68 [0.64-0.72], respectively). CONCLUSIONS: Using only information normally present in the files of a general practitioner, a predictive model was developed that performed similarly to one supplemented by information obtained from additional questions. The simplicity of PM1 makes it easy to implement in the current health care setting.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3