Toward a hybrid Artificial Pancreas

Author:

Friedman Eli A1

Affiliation:

1. Department of Medicine, State University of New York, Health Science Center at Brooklyn Brooklyn, New York

Abstract

Management of insulinopenic diabetic individuals centers on administration of insulin by means of multiple injections, a wearable or implantable insulin-infusion pump, or a whole-organ or segmental-pancreas transplant. Preliminary trials indicate that surgical implantation of a hybrid device containing living insulin-secreting tissue may function as a combined glucose sensor and insulin-infusion pump. By means of a chamber composed of a semipermeable membrane shaped into hollow fibers or a box surrounding endocrine tissue, pilot studies have shown that isolated islets of Langerhans, fragments of insulinoma, or a fetal pancreas retains function for days to weeks, as judged by the ability to sustain euglycemic conditions in chemically induced diabetic rats. Lacking clear proof that normalizing blood glucose levels will prevent vascular complications of diabetes in humans, the case for further development of a hybrid (tissue plus fabricated components) device rests mainly on optimistic extrapolation of results attained in the chemically induced diabetic rat and dog. For the minority of diabetic patients who have insulin-dependent diabetes, the benefit afforded by a bionic device establishing internal insulin release regulated by silently sensed blood glucose level is more than enough payoff for the discomfort and surgery involved in its implantation. Further trials of a hybrid artificial pancreas in the dog appear warranted as a logical extension of preliminary studies with this species.

Publisher

American Diabetes Association

Subject

Advanced and Specialized Nursing,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3