Glucagon Receptor Knockout Mice Display Increased Insulin Sensitivity and Impaired β-Cell Function

Author:

Sørensen Heidi1,Winzell Maria Sörhede2,Brand Christian L.1,Fosgerau Keld1,Gelling Richard W.3,Nishimura Erica1,Ahren Bo2

Affiliation:

1. Diabetes Research Unit, Novo Nordisk, Måløv, Denmark

2. Department of Clinical Sciences, Section of Medicine, Lund University, Lund, Sweden

3. Department of Medicine, University of Washington, Seattle, Washington

Abstract

In previous studies, glucagon receptor knockout mice (Gcgr−/−) display reduced blood glucose and increased glucose tolerance, with hyperglucagonemia and increased levels of glucagon-like peptide (GLP)-1. However, the role of glucagon receptor signaling for the regulation of islet function and insulin sensitivity is unknown. We therefore explored β-cell function and insulin sensitivity in Gcgr−/− and wild-type mice. The steady-state glucose infusion rate during hyperinsulinemic-euglycemic clamp was elevated in Gcgr−/− mice, indicating enhanced insulin sensitivity. Furthermore, the acute insulin response (AIR) to intravenous glucose was higher in Gcgr−/− mice. The augmented AIR to glucose was blunted by the GLP-1 receptor antagonist, exendin-3. In contrast, AIR to intravenous administration of other secretagogues was either not affected (carbachol) or significantly reduced (arginine, cholecystokinin octapeptide) in Gcgr−/− mice. In islets isolated from Gcgr−/− mice, the insulin responses to glucose and several insulin secretagogues were all significantly blunted compared with wild-type mice. Furthermore, glucose oxidation was reduced in islets from Gcgr−/− mice. In conclusion, the present study shows that glucagon signaling is required for normal β-cell function and that insulin action is improved when disrupting the signal. In vivo, augmented GLP-1 levels compensate for the impaired β-cell function in Gcgr−/− mice.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3