Effects of Acute Insulin Deficiency on Glucose and Ketone Body Turnover in Man: Evidence for the Primacy of Overproduction of Glucose and Ketone Bodies in the Genesis of Diabetic Ketoacidosis

Author:

Miles John M1,Rizza Robert A1,Haymond Morey W1,Gerich J E1

Affiliation:

1. Endocrine Research Unit, Departments of Medicine, Pediatrics and Physiology, Mayo Medical School and Mayo Clinic, Rochester, Minnesota.

Abstract

SUMMARY To assess the relative contribution of overproduction and underutilization of glucose and ketone bodies to the development of diabetic ketoacidosis in man, the effects of acute insulin deficiency on glucose and ketone body turnovers were determined in seven ketosis-prone (type I) diabetic subjects. After termination of prolonged intravenous infusions of insulin, which had been maintaining the subjects euglycemic, plasma free insulin decreased from 18 ± 4 μU/ml to 7 ± 1 μU/ml, P < 0.01; plasma glucagon increased from 67 ± 6 pg/ml to 259 ± 67 pg/ml, P < 0.05, but plasma growth hormone and cortisol did not increase. Plasma glucose increased from 5.4 ± 0.3 mM to 15.6 ± 1.0 mM, P < 0.01; plasma ketone bodies (β-hydroxybutyrate plus acetoacetate) increased from 1.4 ± 0.4 mM to 7.2 ± 1.5 mM, P < 0.01. Glucose production increased abruptly from 13.2 ± 1.1 μmol/kgmin to a maximum of 26.1 ± 2.9 μmol/kg-min at 2 h but then decreased toward baseline rates; glucose utilization also increased transiently. In contrast, both ketone body production and utilization increased progressively throughout the study from 5.4 ± 1.4 and 5.5 ± 1.1 to 18.3 ± 3.9 and 14.7 ± 2.1 μmol/kg-min, respectively, P < 0.01. Clearance of both glucose and ketone bodies decreased more than 50%, P < 0.01. These results indicate that overproduction of glucose and ketone bodies is the primary process involved in the initiation of diabetic ketoacidosis in man. However, persistent overproduction of glucose and ketone bodies may not be necessary for the maintenance of hyperglycemia and hyperketonemia, since clearance of both substrates is impaired. Finally, since, of all counter-insulin hormones measured, only plasma glucagon increased coincident with increases in glucose and ketone body production, these results provide further evidence that glucagon may be the most important counter-insulin hormone involved in the genesis Of ketoacidosis.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3