Affiliation:
1. Departments of Medicine and Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah;
2. Research Service, VA Medical Center, Salt Lake City, Utah.
Abstract
OBJECTIVE
Excess tissue iron levels are a risk factor for diabetes, but the mechanisms underlying the association are incompletely understood. We previously published that mice and humans with a form of hereditary iron overload, hemochromatosis, exhibit loss of β-cell mass. This effect by itself is not sufficient, however, to fully explain the diabetes risk phenotype associated with all forms of iron overload.
RESEARCH DESIGN AND METHODS
We therefore examined glucose and fatty acid metabolism and hepatic glucose production in vivo and in vitro in a mouse model of hemochromatosis in which the gene most often mutated in the human disease, HFE, has been deleted (Hfe−/−).
RESULTS
Although Hfe−/− mice exhibit increased glucose uptake in skeletal muscle, glucose oxidation is decreased and the ratio of fatty acid to glucose oxidation is increased. On a high-fat diet, the Hfe−/− mice exhibit increased fatty acid oxidation and are hypermetabolic. The decreased glucose oxidation in skeletal muscle is due to decreased pyruvate dehydrogenase (PDH) enzyme activity related, in turn, to increased expression of PDH kinase 4 (pdk4). Increased substrate recycling to liver contributes to elevated hepatic glucose production in the Hfe−/− mice.
CONCLUSIONS
Increased hepatic glucose production and metabolic inflexibility, both of which are characteristics of type 2 diabetes, may contribute to the risk of diabetes with excessive tissue iron.
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献