Transfusion of Apoptotic β-Cells Induces Immune Tolerance to β-Cell Antigens and Prevents Type 1 Diabetes in NOD Mice

Author:

Xia Chang-Qing1,Peng Ruihua1,Qiu Yushi1,Annamalai Mani1,Gordon David1,Clare-Salzler Michael J.1

Affiliation:

1. From the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida

Abstract

In vivo induction of β-cell apoptosis has been demonstrated to be effective in preventing type 1 diabetes in NOD mice. Based on the notion that steady-state cell apoptosis is associated with self-tolerance and the need for developing a more practical approach using apoptotic β-cells to prevent type 1 diabetes, the current study was designed to investigate apoptotic β-cells induced ex vivo in preventing type 1 diabetes. The NIT-1 cell line serves as a source of β-cells. Apoptotic NIT-1 cells were prepared by ultraviolet B (UVB) irradiation. Three weekly transfusions of UVB-irradiated NIT-1 cells (1 × 105/mouse) or PBS were used to determine whether transfusions of UVB-irradiated NIT-1 cells induce immune tolerance to β-cell antigens in vivo and prevent type 1 diabetes. The suppression of anti–β-cell antibodies, polarization of T-helper (Th) cells, and induction of regulatory T-cells by UVB-irradiated NIT-1 cell treatment were investigated. The transfusions of apoptotic NIT-1 cells suppress anti–β-cell antibody development and induce Th2 responses and interleukin-10–producing regulatory type 1 cells. Importantly, this treatment significantly delays and prevents the onset of diabetes when 10-week-old NOD mice are treated. Adoptive transfer of splenocytes from UVB-irradiated NIT-1 cell–treated mice prevents diabetes caused by simultaneously injected diabetogenic splenocytes in NOD-Rag−/− mice. Moreover, the proliferation of adoptively transferred carboxyfluorescein diacetate succinimidyl ester–labeled β-cell antigen–specific T-cell receptor–transgenic T-cells in UVB-irradiated NIT-1–cell treated mice is markedly suppressed. The transfusion of apoptotic β-cells effectively protects against type 1 diabetes in NOD mice by inducing immune tolerance to β-cell antigens. This approach has great potential for immune intervention for human type 1 diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3