Affiliation:
1. Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
Abstract
We investigated the physiological regulation of adiponectin exocytosis in health and metabolic disease by a combination of membrane capacitance patch-clamp recordings and biochemical measurements of short-term (30-min incubations) adiponectin secretion. Epinephrine or the β3-adrenergic receptor (AR) agonist CL 316,243 (CL) stimulated adiponectin exocytosis/secretion in cultured 3T3-L1 and in primary subcutaneous mouse adipocytes, and the stimulation was inhibited by the Epac (Exchange Protein directly Activated by cAMP) antagonist ESI-09. The β3AR was highly expressed in cultured and primary adipocytes, whereas other ARs were detected at lower levels. 3T3-L1 and primary adipocytes expressed Epac1, whereas Epac2 was undetectable. Adiponectin secretion could not be stimulated by epinephrine or CL in adipocytes isolated from obese/type 2 diabetic mice, whereas the basal (unstimulated) adiponectin release level was elevated twofold. Gene expression of β3AR and Epac1 was reduced in adipocytes from obese animals, and corresponded to a respective ∼35% and ∼30% reduction at the protein level. Small interfering RNA–mediated knockdown of β3AR (∼60%) and Epac1 (∼50%) was associated with abrogated catecholamine-stimulated adiponectin secretion. We propose that adiponectin exocytosis is stimulated via adrenergic signaling pathways mainly involving β3ARs. We further suggest that adrenergically stimulated adiponectin secretion is disturbed in obesity/type 2 diabetes as a result of the reduced expression of β3ARs and Epac1 in a state we define as “catecholamine resistance.”
Funder
Åke Wiberg Foundation
Swedish Diabetes Foundation
Novo Nordisk Foundation
Swedish Medical Research Council
Publisher
American Diabetes Association
Subject
Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献