Nonenzymatic Glycosylation Reduces the Susceptibility of Fibrin to Degradation by Plasmin

Author:

Brownlee Michael1,Vlassara Helen1,Cerami Anthony1

Affiliation:

1. Laboratory of Medical Biochemistry, Rockefeller University 1230 York Avenue, New York, New York 10021

Abstract

The effect of nonenzymatic glycosylation on the susceptibility of fibrin to degradation by the specific fibrinolytic enzyme plasmin was evaluated using both a fibrin plate assay anda fluorogenic synthetic plasmin substrate assay. Data from both types of experiments demonstrate that nonenzymatic glycosylation reduces the susceptibility of fibrin to plasmin degradation. Acetylation and carbamylation have qualitatively similar effects, indicating that chemical modification of lysine amino groups is the underlying phenomenon responsible for the observed degradative defect produced by glucose. Experimental conditions that increased the rate of nonenzymatic protein glycosylation (higher monosaccharide concentration, glucose-6-phosphate) were associated with correspondingly greater degrees of resistance to degradation by plasmin. Such reduced degradation of nonenzymatically glycosylated proteins in vivo may contribute to the accumulation of fibrin and several other proteins observed in those tissues most frequently affected by the complications of diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3